Notes: 7.1 Put on bright yellow paper!

 *Reciprocal Identities:$\sin \theta=\frac{1}{\csc \theta}$
$\cos \theta=\frac{1}{\sec \theta}$
$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
\rightarrow Leave a little space between each type of identity!!
*Quotient Identities:
$\frac{\sin \theta}{\cos \theta}=\tan \theta$
$\frac{\cos \theta}{\sin \theta}=\cot \theta$
\rightarrow Leave a little space between each type of identity!!
*Pythagorean Identities:
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\cot ^{2} \theta=\csc ^{2} \theta$
(20) $(\sin \theta)^{2}+(\cos \theta)^{2}=1$

$$
\tan ^{2} \theta+1=\sec ^{2} \theta
$$

\rightarrow Leave a little space between each type of identity!!

Double Angle Identities:

$\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$

$$
\begin{aligned}
& (\sigma T)=1-2 \sin ^{2} \theta \\
& (\sigma)=2 \cos ^{2} \theta-1
\end{aligned}
$$

*Opposite Angle Identities:

$$
\sin (-\theta)=-\sin \theta
$$

$$
\cos (-\theta)=\cos \theta
$$

$$
\begin{gathered}
\sin \left(-\frac{\pi}{2}\right)^{2}=-\sin \left(\frac{\pi}{2}\right) \\
-1=-1
\end{gathered}
$$

$$
\cos (-2 \pi)=\cos (2 \pi)
$$

$1=1$

\#1-19: SHOW ALLWORK. YOU MUST USE IDENTITIES TO SOLVE EACH PROBLEM!

a. Write identity
b. Plug in values
c. Show work and solve

Use the given information to determine the exact trigonometric value.

1. $\cot \theta=-\frac{\sqrt{5}}{2}, \frac{\pi}{2}<\theta<\pi ; \tan \theta$

$$
\text { 2. } \sin \theta=-\frac{1}{5}, \quad \pi<\theta<\frac{3 \pi}{2} ; \cos \theta
$$

CHECK ANSWERS:

$$
-\frac{3}{4} \quad-\frac{\sqrt{2}}{3} \quad-\frac{2 \sqrt{5}}{5}
$$

$$
-\frac{2 \sqrt{6}}{5} \quad-\frac{3 \sqrt{13}}{13} \quad \frac{4 \sqrt{3}}{3}
$$

$$
-\frac{2 \sqrt{6}}{7} \quad \frac{\sqrt{2}}{4} \quad \frac{\sqrt{5}}{3} \quad \frac{\sqrt{15}}{4}
$$

$$
\sin x+\cos x \quad 1 \quad 2
$$

$$
\cos x \quad \csc x
$$

$$
\csc \theta \quad \sec \theta
$$

$$
2 \cot \theta \quad 2 \cos \theta
$$

Simplify each expression.
3. $\frac{\csc \theta}{\cot \theta}$
4. $(\cos x)(\csc x)(\tan x)$
5. $\frac{\sin 2 \theta}{\cos \theta} \cdot \cot \theta$

Determine an exact value using identities:

1. $\cot \theta=-\frac{\sqrt{5}}{2} \quad \frac{\pi}{2}<\theta<\pi \quad$ II \quad find $\tan \theta=$?

$$
\begin{aligned}
\tan \theta & =\frac{1}{\cot \theta} \quad \tan \theta=- \\
& =\frac{1}{-\frac{\sqrt{5}}{2}}=-\frac{2}{\sqrt{5}}=-\frac{2 \sqrt{5}}{5}
\end{aligned}
$$

CHECK ANSWERS:		
$-\frac{3}{4}$	$-\frac{\sqrt{2}}{3}$	$-\frac{2 \sqrt{5}}{5}$
$-\frac{2 \sqrt{6}}{5}$	$-\frac{3 \sqrt{13}}{13}$	$\frac{4 \sqrt{3}}{3}$
$-\frac{2 \sqrt{6}}{7}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{5}}{3}$
$\frac{\sqrt{15}}{4}$		
$\sin x+\cos x$	1	2
$\cos x$	$\csc x$	
$\csc \theta$	$\sec \theta$	
$2 \cot \theta$	$2 \cos \theta$	

*Reciprocal Identities:
$\sin \theta=\frac{1}{\csc \theta}$
$\cos \theta=\frac{1}{\sec \theta}$

$$
\csc \theta=\frac{1}{\sin \theta}
$$

$$
\sec \theta=\frac{1}{\cos \theta}
$$

$\tan \theta=\frac{1}{\cot \theta}$

$$
\cot \theta=\frac{1}{\tan \theta}
$$

Double Angle Identities:
$\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

$$
(6)=1-2 \sin ^{2} \theta
$$

$$
(0)=2 \cos ^{2} \theta-1
$$

*Quotient Identities:
$\frac{\sin \theta}{\cos \theta}=\tan \theta$
$\frac{\cos \theta}{\sin \theta}=\cot \theta$
*Pythagorean Identities:
$\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\cot ^{2} \theta=\csc ^{2} \theta$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
*Opposite Angle Identities:
$\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=\cos \theta$

Determine an exact value using identities:
2. $\sin \theta=-\frac{1}{5} \quad \pi<\theta<\frac{3 \pi}{2} \quad$ find $\cos \theta$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\left(-\frac{1}{5}\right)^{2}+\cos ^{2} \theta=1
$$

$\frac{1}{25}+\cos ^{2} \theta=1$

$$
\begin{aligned}
\cos ^{2} \theta & =1-\frac{1}{25} \\
\sqrt{\cos ^{2} \theta}= & \frac{24}{25} \\
\cos \theta & =\frac{2 \sqrt{6}}{5}
\end{aligned}
$$

CHECK ANSWERS:		
$-\frac{3}{4}$	$-\frac{\sqrt{2}}{3}$	$-\frac{2 \sqrt{5}}{5}$
$-\frac{2 \sqrt{6}}{5}$	$-\frac{3 \sqrt{13}}{13}$	$\frac{4 \sqrt{3}}{3}$
$-\frac{2 \sqrt{6}}{7}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{5}}{3}$

Simplify each expression:

3. $\begin{aligned} \frac{\csc \theta}{\cot \theta}=\frac{\frac{1}{\sin \theta}}{\frac{\cos \theta}{\sin \theta}} & =\frac{1}{\sin \theta} \cdot \frac{1}{\sin \theta} \\ & =\frac{1}{\cos \theta} \\ & =\sec \theta\end{aligned}$

CHECK ANSWERS:

$-\frac{3}{4} \quad-\frac{\sqrt{2}}{3} \quad-\frac{2 \sqrt{5}}{5}$
$-\frac{2 \sqrt{6}}{5} \quad-\frac{3 \sqrt{13}}{13} \quad \frac{4 \sqrt{3}}{3}$
$\begin{array}{llll}-\frac{2 \sqrt{6}}{7} & \frac{\sqrt{2}}{4} & \frac{\sqrt{5}}{3} & \frac{\sqrt{15}}{4}\end{array}$

$\sin x+\cos x$	1	2
$\cos x$	$\csc x$	
$\csc \theta$	$\sec \theta$	
$2 \cot \theta$	$2 \cos \theta$	

4. $(\cos x)(\csc x)(\tan x)$

Simplify each expression:

$$
\begin{aligned}
& \text { 5. } \frac{\sin 2 \theta}{\cos \theta} \cdot \cot \theta \\
& \frac{2 \sin ^{\prime} \theta \cos \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}=2 \cos \theta
\end{aligned}
$$

CLEARLY SHOW ALL WORK ON A SEPARATE SHEET OF PAPER OR ON THE BACK OF THIS PAPER.

Use the given information to determine the exact trigonometric value.
6. $\sin \theta=\frac{\sqrt{3}}{4}, 0<\theta<\frac{\pi}{2} ; \csc \theta$
7. $\sin \theta=\frac{1}{4}, 0<\theta<\frac{\pi}{2} ; \cos \theta$
8. $\cos \theta=-\frac{2}{3}, \frac{\pi}{2}<\theta<\pi ; \sin \theta$
9. $\csc \theta=\frac{\sqrt{11}}{3}, \frac{\pi}{2}<\theta<\pi ; \cot \theta$
10. $\sec \theta=-\frac{5}{4}, \frac{\pi}{2}<\theta<\pi ; \tan \theta$
11. $\sin \theta=-\frac{1}{3}, \pi<\theta<\frac{3 \pi}{2} ; \tan \theta$
12. $\tan \theta=\frac{2}{3}, \pi<\theta<\frac{3 \pi}{2} ; \cos \theta$
13. $\sec \theta=-\frac{7}{5}, \pi<\theta<\frac{3 \pi}{2} ; \sin \theta$

Simplify each expression.
14. $\frac{\sec x}{\tan x}$
15. $\frac{\cot \theta}{\cos \theta}$
16. $\left(\csc ^{2} \theta\right)(\sin 2 \theta)$
17. $\cos x \cdot \tan x+\sin x \cdot \cot x$
18. $\sin x \cdot \cos x \cdot \sec x \cdot \cot x$
19. $(\sin x+\cos x)^{2}+(\sin x-\cos x)^{2}$
hint: square each part, then combine like terms reminder: $(x+y)^{2}=x^{2}+2 x y+y^{2}$

